Minggu, 28 Juni 2009

Can Biomass Replace Coal?

by Thomas R. Blakeslee, Clearlight Foundation

Wind and solar power are clean and free but they only work part of the time. When the sun goes down and the wind dies, coal is still the workhorse for generating baseload power. But coal is killing us by warming the planet, acidifying our lakes and oceans and sprinkling mercury over the landscape. Geothermal can do part of the job but it will take decades to drill enough wells.

One quick fix that is finally catching on is converting existing coal plants to biomass. Fuel and maintenance costs are actually reduced and expensive pollution control upgrades can often be avoided because biomass contains very little sulphur or mercury. Often the biomass can be grown locally, providing good local jobs and keeping the ratepayers dollars in the community. Biomass burning is carbon neutral because the CO2 emitted by one crop is taken back by the next.

But wait! The U.S. burns a billion tons of coal per year. Since biomass is less energy dense than coal it would take 1.6 billion tons of biomass per year to replace all that coal. According to a DOE study, we can grow about 1.3 on exising available land.

Not quite enough. But there is a way: Efficiency! Existing coal power plants are only about 33% efficient. That means that 67% of the coal’s energy is simply thrown away, often simply heating up a nearby river!


A DOE study estimated the U.S. biomass growing capacity as 1.3 billion tons/yr.

We can get quick reductions in pollution and global warming by simply repowering existing coal power plants. However, a better long-term approach is to start building much more efficient, small-scale power plants where the waste heat can be put to immediate use. Combined Heat and Power (CHP) plants can achieve efficiencies of up to 90% by using the waste heat from electrical generation to produce hot water, heating and air conditioning. Office buildings, hotels, industrial parks and shopping centers are already proving the practicality of CHP.

Efficient, small-scale electrical generation is already possible using fuel cells and microturbines. Systems as small as 300 kW can generate electrical power at 47% efficiency and then deliver the remaining 338 kW for heating applications. Most systems today are powered by natural gas, but biomass can be gasified to produce carbon-neutral syngas, which burns just like natural gas. Small plants can run unattended because internet-connected remote control consoles at the manufacturer can be monitored by experts.

Biomass gasifiers aren’t fussy about what they burn. Even plants that look very different to us are chemically very similar and all produce about 7000 Btu-per-pound when dry. This means that monoculture is not necessary and complimentary mixtures of plants can be grown as feedstock. Marginal land can be used by growing specially-selected crops. Agave, for example, grows happily in semi-desert and produces four times the yield of corn.

Biomass has a tarnished reputation because early attempts to use it were so inefficient. When you ferment ethanol from corn, you get only 330 gallons of ethanol per acre. If you burn 1/7 of an acre of corn you will get the same amount of heat as burning 330 gallons of ethanol. To make matters worse, the ethanol will be burned in a car engine that is only about 25% efficient. Elecric car motors are 90% efficient, so an electric car charged by a 90% efficient biomass CHP plant can go about 22 times as far on an acre of corn as one burning fermented ethanol!

New generation ethanol plants actually use a gasifier to make syngas, which is then transformed into ethanol by catalysts or enzymes. Coskata has a process that makes 100 gallons/dry ton of biomass. A big improvement, but still no match for the efficiency of an electric car. Making ethanol by fermentation also uses lots of energy cooking, fermenting and drying the ethanol. Gasifiers need no external energy once they are started. Gasifiers are also very convenient for converting coal power plants because the syngas can be piped to burners inside the coal-fired boiler. The gasifier can be built in any convenient place leaving the coal burning boiler intact for fuel flexibility.

Gasifiers aren’t fussy about what they are fed. In fact old automobile tires and municipal waste work just fine. In fact, the trash left over after recyclables are diverted works just fine. There are already 90 Waste-to-Energy (WTE) plants in operation in the U.S. This connection between biomass and trash burning turns out to be most unfortunate because an amazingly negative activist movement has grown up to fight against incinerators.

Paul Connett, who also crusades against fluoridation, took up the cause of incinerators, back in the 1980’s. At that time incinerators were a serious source of dioxins and mercury. Now, the incinerators are 1000 times cleaner but the fight continues. By quoting “facts” from studies done before the cleanup, it is still possible to scare well meaning people into marching down to city hall to block permits. Your backyard barbeque produces seven times more dioxins than are allowed at the stack of a modern incinerator.

Unfortunately, the panic about incinerators has spread across the blogsphere and well meaning but misinformed volunteers have blocked permits for far to many well-conceived biomass power plants and WTE facilities. Every time the activists shoot down a project the environment suffers as people are forced to bury the waste or burn it in a backyard barrel. By stopping clean power generation the activists also perpetuate our dependence on dirty coal power plants!

The internet is a wonderful thing, but bad ideas can spread like wildfire. Just like the global warming denial sites, Zero waste sites sound very convincing. The problem is we can’t economically recycle everything. “Zero waste” sounds good just like “clean coal” does, but both are impractical. We must provide a clean, safe way to detoxify the trash that remains after recycling. Plasma gasifiers leave only 0.2% ash residue and generate significant green power in the bargain. If we run short of trash they can happily run on biomass too.

source: http://www.renewableenergyworld.com/rea/news/article/2009/06/can-biomass-replace-coal?cmpid=WNL-Thursday-June25-2009

Kamis, 25 Juni 2009

Aren Sebuah Jawaban Krisis Energi atau Pesaing Kebutuhan Makanan???

JAKARTA, Pada Selasa 6 Desember lalu Kementrian Negara Riset dan Teknologi mengadakan Workshop yang bertajuk Budidaya dan Pemanfaatan Aren Untuk Bahan Pangan dan Energi, workshop ini diikuti oleh para peneliti dan praktisi aren dan energi terbarukan, akademisi dari berbagai universitas, serta berbagai departemen baik pusat maupun daerah diseluruh Indonesia, sementa untuk pembicara terdiri dari akademisi, dan ahli energi terbarukan serta praktisi, pengusaha dan pengembang bio ethanol maupun petani dan pengrajin gula aren.

David Alloreung Pembicara kunci yang merupakan Peneliti pada Puslitbang Tanaman Perkebunan, Departemen Pertanian dalam pemaparanya menjelaskan bahwa aren merupakan tanaman serba guna yang mempunyai potesi besar dalam bahan subtitusi pembuat gula maupun bioethanol, sayangnya sampai saat ini pohon aren yang tumbuh di Indonesia sebagian besar merupakan pohon yang umumnya tumbuh secara liar serta sampai saat ini belum ada penelitian yang memadai tentang pohon aren unggul.

Aren (Arnga pinnata Merr) adalah salah satu keluarga palma yang serbaguna, dapat tumbuh pada ketinggian 0-1500 meter di atas permukaan laut. Sekalipun lebih dikenal sebagai tanaman hutan, aren telah mulai dibudidayakan secara baik oleh suku Batak Toba sejak awal tahun 1900. Tanaman ini tersebar di hampir seluruh wilayah Indonesia pada berbagai kondisi agroekososistem. Penyebaran pertumbuhan aren umumnya berlangsung secara alamiah. Di beberapa tempat, terutama yang memiliki kebiasaan membuat gula atau mengonsumsi minuman beralkohol, aren sudah sering ditanam secara sengaja, meskipun umumnya sebagai tanaman pinggiran atau tanaman sela di antara tanaman pepohonan yang sudah ada. Meskipun para petani penderes mengakui bahwa gula yang dihasilkan dari nira aren sangat menolong ekonomi mereka, perhatian pemerintah terhadap upaya pengembangan tanaman ini sangat terbatas dan tidak konsisten. Hal yang sama dijumpai pada lembaga-lembaga penelitian, penelitian tanaman aren umumnya dilakukan secara insidentil.

Berkaitan dengan sumber energi terbarukan, yang sudah lama disuarakan, kita ternyata tidak memberikan respons secara cepat. Krisis energi di akhir 2005 yang dibarengi dengan fenomena kekacauan iklim telah berhasil memicu kesadaran semua pihak untuk mengembangkan energi terbarukan dan lebih ramah lingkungan. Dalam konteks ini, aren memiliki potensi yang sangat besar sebagai sumber utama bioenergi yang ramah lingkungan di samping sebagai penghasil pangan dan tanaman konservasi.

Kebutuhan bahan bakar premium terus meningkat sejalan dengan kemajuan di bidang ekonomi dan impor meningkat tajam dari sekitar 0.5 juta pada tahun 1998 menjadi sekitar 6 juta KL pada tahun 2004 ketika kebutuhan bahanbakar jenis ini telah mencapai 17 juta KL/tahun. Jika digunakan campuran alkohol sebesar 10 % berarti kebutuhan alkohol akan mencapai 1.7 juta Kl/tahun atau sekitar 4.6 juta liter/hari. Masalahnya adalah hampir sama sumber bahan baku biofuel bersaing dengan kebutuhan pangan di samping persaingan pemanfaatan lahan untuk menghasilkan bioenergi. Dalam konteks ini, aren dapat berperan sebagai salah satu sumber bioenergi yang penting mengingat produktivitasnya yang sangat tinggi sehingga hemat pemakaian lahan. Disamping itu, dapat ditanam di antara tanaman yang sudah ada atau sebagai komponen tanaman untuk reboisasi atau penghijauan sehingga tidak bersaing dengan komoditas pangan.

Tanaman aren memiliki daya adaptasi terhadap berbagai kondisi lahan dan agroklimat, memiliki toleransi yang tinggi dalam pertanaman campuran termasuk dengan tanaman kayu, tumbuh relatif cepat serta memiliki perakaran dan tajuk yang lebat sehingga sangat cocok untuk tujuan konservasi tanah dan air, merupakan tanaman serbaguna karena hampir semua bagiannya bernilai ekonomi dan tidak membutuhkan pemeliharaan intensif sehingga cocok bagi petani miskin di lahan marginal. Tanaman aren juga menghasilkan biomas di atas tanah yang sangat besar satu hingga 2 ton/pohon, sehingga dapat berperan penting dalam CO2 sequestration.QMI-MIT.com

Source:http://www.qmi-mit.com/index.php?option=com_content&task=view&id=34&Itemid=1

Produksi Biotheanol dari Nira Aren Skala Mikro-Kecil

Ditulis Oleh supermin
Senin, 10 Desember 2007

Ethanol (Ethyl Alkohol-C2H5-OH) sudah dikategorikan sebgai energi komersial atau energi teknis karena telah mencapai kematangan teknis dan kematangan komersial dengan Brasil sebagai produsen ethanol terbesar di dunia. Saat ini perusahaan-perusahaan otomotif sudah memproduksi mobil dengan bahan bakar ethanol seperti Volswagen AG. Bahkan di Brasil telah mengembangkankan pesawat terbang kecil EMB 202, yang merupakan pesawat terbang pertama di dunia menggunakan bahan bakar ethanol (alcohol) dan saat ini lebih dari 300 pesawat terbang kecil di Brasil telah memakai ethanol sebagai bahan bakar.

Bioethanol merupakan bahan bakar alternatif pengganti premium dan pertamax, sehingga pemakaiannya akan menghemat devisa. Bioethanol dapat dihasilkan dari tetes tebu, singkong, jagung, sorghum maupun aren, sehingga merupakan energi yang dapat diperbaharui. Selain itu gas buang dari mesin yang menggunakan bioethanol mempunyai emisi yang lebih rendah disbanding dengan minyak premium maupun pertamax.Pada umumnya mesin yang bisa memproses bahan bakar ethanol disebut Flex-Fuel dan mesin yang menggunakan bahan bakar minimal nilai octan 90 dapat juga dikonversi pemakaian bahan bakarnya dengan komposisi Premium 80%-90% (perkiraan nilai octan 88) ditambah ethanol 10%-20% (dengan nilai octan 129) sehingga dapat menghasilkan nilai octan 91-93.

Saat ini di Indonesia telah dibangun beberapa pabrik bioethanol plant dengan kapasitas mulai dari 300 liter/hari dengan system batch sampai dengan 600 ton/hari dengan system kontinyu sebagai langkah awal untuk pengembangan selanjutnya ke skala komersial. Keputusan kebijakan untuk menentukan kelayakan penggunaan bioethanol secara umum perlu dilandasi suatu kajian yang mendalam dengan mempertimbangkan penguasaan teknologi, nilai ekonomis, kontinyuitas suplai dan manfaat lain dari penggunaan bioethanol tersebut.

Ethanol saat ini berasal dari beberapa sumber, Brasil dari tebu, Amerika Serikat dari jagung, sedangkan di Indonesia umumnya berasal dari tebu, sorghum, singkong termasuk oleh BPPT (Badan Pengkajian dan Penerapan Teknologi) dan PT Blue Indonesia mengembangkan dari aren (airnira) dan nipah. Dengan pengembangan teknologi dari PT Blue Indonesia telah berhasil menciptakan alat distilasi berukuran kecil dan mobile dengan kapasitas 500liter/hari-1500liter/hari (dengan ukuran 2.5m x 0.8 m x 0.5m : kadar output ethanol, 85 %, 95 % dan 98 %) dengan bahan baku dari hasil sadap pohon aren. Alat yang diciptakan PT Blue Indonesia sangat praktis dan cocok dioperasikan oleh masyarakat untuk skala home industri dengan kapasitas 100 l/hari – 1000 l/hari) dengan memakai bahan yang murah dan praktis.

Potensi tanaman aren di Sulawesi Utara.

Menurut Johan Susilo,ST. Direktur Utama PT Blue Indonesia yang telah mengembangkan industri bio-etanol Sulawesi Utara, pada Workshop Budidaya dan Pemanfaatan Aren untuk Bahan Pangan dan Energi, Kamis, 6 Desember 2007 di gedung BPPT II.Tanaman aren merupakan salah satu tanaman hutan/perkebunan yang memiliki fungsi sebagai sumber pendapatan dan tanaman konservasi tanah dan air. Tanaman aren di Sulawesi Utara pada umumnya masih tumbuh liar dan hanya sebagian kecil yang telah ditanam pada daerah aliran sungai atau jurang. Luas areal pertanaman aren di Sulawesi Utara hingga tahun 2004 mencapai 2.942 ha yang tersebar di 7 kabupaten dan 44 kecamatan. Peluang pengembangan dan perluasana areal penanaman baru di Sulawesi Utara masih dapat dilaksanakan. Disampig itu dilaksankan intensifikasi untuk beberapa areal pertanaman yang masih belum teratur pola tanamnya. Peluang pengembangan produk tanaman aren dilakukan dengan cara-cara seperti optimalisasi produk, penggunaan teknologgi dan pengembangan pasar. Jenis produk yang potensial dan mempunyai peluang export adalah alkohol teknis, gula semut, gula merah, alkohol untuk bahan bakar dan minuman beralkohol. Kondisi iklim dan tanah Sulawesi Utara sebagian besar sangat besar sangat sesuai dengan syarat tumbuh aren.

Berdasarkan data lapangan yang ada, diperkirakan terdapat 300-400 pohon per ha, dimana jumlah tanaman yang produktif antara 100-150 pohon per ha dengan perkeiraan jumlah nira rata-rata 25 liter/pohon/hari atau 11/032.500 liter perhari apabila dikonversi ke ethanol setara dengan 735.500 liter perhari atau 264.780.000 liter ethanol pertahun.

source:http://www.qmi-mit.com/index.php?option=com_content&task=view&id=35&Itemid=1

Rabu, 24 Juni 2009

Blooming Biofuel: How Algae Could Provide the Solution

The distant sparkle of algae is coming into focus. Interest is growing exponentially and a handful of companies are planning the leap from research to commercial production of algae-based fuels.

by Jeffrey Decker

London, UK [Renewable Energy World Magazine]
In the years since the discovery of significant concentrations of lipids in certain species of algae, estimates for the potential of the single-cell water-borne plant have varied wildly. What is agreed is the substantial potential for algae to become a valuable resource in the portfolio of second generation biofuels. The tiny plants can produce at least 15 times more oil per hectare than alternatives like jatropha, rapeseed and palm, and are 20 times as productive as corn and soy. Today, high-end food supplements are still the main algal product, but some estimate their fuels could compete with petroleum at US$60 per barrel.

But with the range of technologies available and a ground swell of R&D investment cash, confidence among developers is high that algae-derived biofuels will soon be able to compete with fossil fuels.

Excitement, and sometimes hype, are keywords here. ‘I’ve seen calculations that Arizona could provide 40 to 60 billon US gallons (182 to 272 billion litres) of road fuels, biodiesel and ethanol, from algae, just utilizing its open space,’ explains Tom Byrne, secretary of the Algal Biomass Association and CEO of Byrne & Company Ltd, saying: ‘I don’t really see where algae are going to compete head-to-head with corn or soybeans or any of the feedstocks. That’s the excitement of it, because it doesn’t do that. Algae will play a leading role because it uses wastewater and CO2, and releases oxygen and clean water.’

The environmental advantages of algae – which absorb CO2 along with nitrates and phosphates – are coupled with the promise of commercial yields of high quality biofuel.

Commercial Endeavours
An indication of this potential is given by the growth of interest in the sector. According to Otto Pulz and his colleagues at the IGV Institute in Potsdam, Germany, the 100,000 known strains of microalgae in the world are currently being scrutinized by at least 200 companies with big plans. At first count, in 2007, there were just five. ‘Mainly in the U.S., it’s concentrated there,’ he says, with European interest next.

Pulz, whose company’s own plans include a 100 hectare facility, notes that American investors were giving three times what Europeans were, despite the fact that significant quantities are unlikely to be sold by anyone for two years, and perhaps longer now that global investments are drying up. For instance, Smorgen Fuels of Melbourne, Australia, which had hoped to sell biodiesel from algae this year, have been forced to announce that the programme has been delayed. ‘It might be another 18 months to a couple of years,’ states business development manager Nelun Fernando. ‘Everything is new, except, of course, for the algae.’

Nonetheless, despite the downturn, investors continue to emerge. ‘In the U.S.,’ says Byrne, ‘I know of about one half billion dollars that have been invested. I’ve heard claims of over a billion. Most of it’s been what we call angel investors.’

Bill Gates and his Cascade Investment LLC jumped behind Sapphire Energy of San Diego, helping them raise ‘substantially more than $100 million’ by September, along with ARCH Venture Partners, Wellcome Trust and Venrock. Sapphire means to produce 10,000 barrels of ‘green crude’ in three to five years.

Solazyme of San Francisco isn’t saying who invested $45 million in their fermentation process to grow algae in the dark. Their target to sell diesel is between next year and 2012, although testing by the global standards-setting body ASTM International has already cleared their diesel for performance and safety.

Being proven helps attract investments, says Adeo Ressi, founding member of Thefunded.com. ‘If you have a company that’s already financed, the likelihood of it being able to receive more money is significantly higher than a new entrant’, he says. ‘Outside of inventing cold fusion, it’s going to be very, very difficult, if not impossible, for new companies to find financing.’ He notes: ‘One nice thing about algae compared to solar and some other clean tech ideas, is that by comparison it can be much more capital efficient.’

The European Union is throwing €2.7 billion behind algae over seven years, and is including algae for the first time in the 2010 calls of its Seventh Framework Programme. Individual countries, particularly in Western Europe, are supporting research and expansion as well.

Nonetheless, some government-backed programmes have failed to live up to expectations. For instance, the Japanese government’s Research for Innovative Technology of the Earth programme spent $100 million studying closed algae systems, but ultimately gave up on it. While in 1996 the United States closed its US Aquatic Species Program, which led research over three decades at two 1000 m² open-pond systems, before concluding the technology was too expensive for large-scale production.

Technologies and Modifications
So-called open systems stand exposed to the elements and nurture algae favourable to the local environment. There’s a lot caretakers can do to stimulate growth in these low-cost simple systems, but not as much as is possible in the more expensive closed systems. These can cover just as many hectares, but are sealed in plastic, glass or bags and offer extensive control options. Numerous innovative designs aim to mimic the low costs of open-ponds with the efficiency and enhanced production of closed systems.

Those bioreactors can be arranged vertically to maximize collection of sunlight, and also allow manipulation of pressure and temperature to stress the algae into producing more oil than they normally would. Some employ centrifuges or chemical additives, and many more tricks have been tested.

Bioreactors are preferred for colder climates, and also allow specific control over the carbon dioxide gas feed. The cleaner the carbon, the ‘happier’ the algae, and the exact makeup of the carbon source can lead to the appropriate selection of algae for the best production. A harvest of 300–400 ppm is considered healthy. That string of energy then has to be turned into something denser that’s biologically stable and won’t break down. Dehydrating the harvest is one of the many challenges researchers are working to overcome.

Another approach to improve yields is selective genetic engineering. While some open pond processes accept the algae that appears and grows naturally, most companies carefully select the species with the most desirable traits. Some others attempt to make their own. ‘We are manipulating the genome,’ says Dominique Duvauchelle, CEO of Eco-Solution, ‘When bacteria lives, it divides in two. And sometimes when this happens you can select the mutations,’ he explains, revealing by way of illustration that some of the species with the highest concentrations of lipids have very hard cellular walls, which hinder efforts to extract the oil. It is therefore desirable to select particular mutations with high lipid content and weaker cell walls for future generations. ‘If you have a continuous culture you can add some new mutations at any time,’ Duvauchelle adds.

Their ‘high throughput platform’ accelerates those divisions and the production of variants. Located outside Paris, his company was founded in 1999 and has raised €9.5 million from private investors. Their discoveries, like some others in this sector, have gone to aid treatment of industrial and municipal wastewater as well as soil decontamination. Indeed, connecting algae production to industry is a common plan, with benefits for both sectors. The algae need a steady stream of CO2 and their absorption of this gas could help to minimize the environmental impact of greenhouse gas emissions.

An example comes from Seambiotic Ltd of Israel, which is reputed to be the first algae cultivation operation using flue gas from coal-fired power plants.

After their pilot plant went online in 2005, says chief advisor Ami Ben-Amotz, the power plant officials were not too happy. ‘Now we are in co-operation. They want to change the front gate so visitors will go into the power plant through the ponds of the algae!’ That will accompany expansion from today’s 1000 m² to a five hectare production plant by late 2009.


They’ve proven the concept, he says, and algae has a place in carbon capture across the industrial world, including at Fischer-Tropsch fuel production facilities for coal-to-liquids or gas-to-liquids, which are among the world’s most potent producers of CO². Natural gas-fired power plants in the U.S. are also feeding algae.

Ben-Amotz advises, ‘To get connected to the chimney is quite difficult,’ but with seven tonnes of algal health food as their main product, picking the algae is easy. ‘My way is not to find the algae, but to let the algae come by themselves. If you give the algae the best conditions they will come. They’re in the water. What they call self-selection. Then you just enrich the algae.’ Nonetheless, now that jet fuel production is a new goal, analyzing strains is a new chore for Seambiotic scientists.

Commercializing and Scaling
Better algae strains will emerge, predicts Brian Willson of Solix Biofuels, but more will be needed if algae-derived biofuels are to achieve their potential. They still need ‘to enhance growth rates, to reduce the cost of oil extraction and reduce the cost of nutrients,’ he explains. Eventually, he says, ‘We can be competitive, we believe, with $60–$80 per barrel.’ This compares with today’s prices, where ‘it’s thousands of dollars per gallon because it’s being produced in research quantities.’

Within three to five years Solix means to begin large-scale production on a 10-acre (4-hectare) site on the Southern Ute Indian Reservation in Southwest Colorado. Their bioreactors will stretch skyward to maximize sunlight exposure, paid for by $10.5 million from its first round of outside funding. The Ute tribe is an equity holder in the company.

Solix isn’t worried with converting their algae oil into fuel. Refineries can buy the oil and re-sell it themselves. ‘It’s essentially a triglyceride, so it’s the same category of compounds we get from soy, canola, palm, jatropha, you name it’, Willson says.

Michael Kroeger of the non-profit German Biomass Research Centre notes: ‘The most advanced technical problem is how to handle the water. Algae only have a very low concentration in the growth medium (0.5 g/l up to maximum 3.0 g/l, depending on the reactor). This makes the harvest and the post-processing very energy-intensive.’

HR Biopetroleum has had almost twenty years to puzzle over these problems, which may be one reason Royal Dutch Shell partnered with it to form Cellana and build massive algae ponds in Hawaii. They are a contender to be the largest biofuel producer when their commercial plant starts operating next year and if their plans for a 20,000 hectare plant hold true for 2012.

Meanwhile, GreenFuel Technologies Corp. seems on a steady course with Aurantia Group to build a 1000 m² algae facility outside a cement plant in Jerez, Spain. They intend to produce around 25,000 tonnes of algae biomass annually from a $92 million facility. The Cambridge, Massachusetts-based company specializes in capturing numerous industrial emissions in algae facilities.

The exception to this young sector’s restraints of time and technology is Alganol Biofuels, which says it is ready this year to sell algae-based ethanol at affordable prices. The Maryland-based company licensed its technology last year to BioFields of Mexico, which invested $850 million last June to build a massive algae farm in Northwest Mexico. Biofields could start producing 378 million litres of ethanol a year, and intends to increase this to 1 billion gallons (3.8 billion litres) per year by 2012. Furthermore, the process avoids the requirement for dewatering, crushing or processing the algae.

The process working both in Mexico and at Alganol’s Florida site was invented by CEO Paul Woods in the 1980s. ‘We don’t make any oil. We specifically look for algae that have very high photosynthetic rates and low oil production. We want to channel carbon into ethanol’ explains Woods. ‘We specifically don’t want to channel carbon into lipids, fatty acids or oils.’

In Florida, Woods is waiting on permits to extract seawater before building a 1000 or 10,000 acre (400–4000 ha) facility. He’s already ordered the ‘soda bottle’-shaped grow chambers. ‘They’re roughly five feet (1.7 metres) wide and we ordered around six and a half miles (10 kilometres),’ he asserts. ‘It’s probably bigger than any other facility in the world. It all comes down to design. We don’t have to harvest our organisms. We don’t crush them, kill them or dewater them. Ethanol is an evaporative. It evaporates out of the space all on its own.’

Competition Driving Innovation
Although interest in algae-derived biofuels is clearly increasing and the sector is attracting significant investment in production expansion and technology R&D, Dave Jones of LiveFuels doesn’t yet foresee fierce competition in this emerging field. ‘I don’t think it’s a winner-take-all game. This is the commodity business. To the extent that we’re all making something to burn, the demand for flammable liquids is much greater than what the algae industry can produce for at least the next couple of decades.’

That observation is apparent in their plan to provide algae oil to fuel refiners. One focus at LiveFuels, Jones says, is algae growing in conjunction with different kinds of microbes and in conjunction with higher level life forms like fish. ‘We think those systems are going to be a lot more robust and a lot less likely to crash than systems that are going to be based on just one set of algae. Healthy competition will help everyone,’ he says, ‘there ought to be plenty of opportunities for companies to play together as they optimize the process.’

In the meantime, production costs are becoming more competitive with fossil-derived alternatives. For instance, the Netherlands’ Algae Link CEO, Peter van den Dorpel, says: ‘We could offer the full chain of algae-to-fuel and be competitive with the fossil fuel market at the level of $100/barrel. Our algae-growing systems today are showing these productivity levels and we are scaling-up production capacity.’ Their demonstration units are small enough to ship and can be scaled upward, he says, mostly to customers planning to grow high-end diet supplements. ‘Sometimes the CO2 issue is the main driver. They don’t even care where the end product goes,’ van den Dorpel adds, noting: ‘We’ve sold more than 30 units in about 20 countries.’

Among the oldest players is Ingrepro Micro Ingredients, and director C. Callenbach says they’re competitive today. ‘If oil doesn’t go below $42/barrel, then it gets into the break-even,’ he asserts. This year the company is building four ‘energy farms’ – a combination of wastewater treatment and algae plant. ‘You produce biomethane and at the same time you produce biomass,’ he says, adding: ‘On 30 hectares the low cost we can achieve is 70–80 tonnes per hectare.’

Ingrepro holds claim to being the largest industrial algae producer in Europe, but they don’t stress themselves on breaking new scientific frontiers. ‘It’s not the system that does it. It’s a combination of the systems and you have to have good management,’ Callenbach says. ‘There are companies focused on convincing people to use their system. We use any system. We are not married to anybody.’

Even so, Callenbach worries the hype promoted by algal newcomers is hurting the overall industry. ‘Some are honestly over-optimistic and some aren’t,’ he remarks, saying: ‘There are a lot of companies that fooled a lot of people.’

As Ingrepro moves outside of food production they’re looking past automobiles and straight into kerosene for jet aircraft. So far, ‘Whatever kerosene we make is very easy to sell, because everybody wants it. It’s a niche market. In the next two years we will be able to lower the cost of our kerosene more.’


As leader of Boeing’s biomass research, Darrin Morgan has also noticed companies over-selling their abilities to produce. ‘It’ll be apparent in the next year who the people are who are talking about it and who are the ones doing it,’ he says.

Though several airlines are still testing innovative alternative fuels in their commercial jet liners, Morgan says Boeing has concluded that phase of its own research. He has already watched the available fuel selection rapidly grow from almost nothing, and notes: ‘The great thing is that the innovation is happening in a wide spectrum of places, from two people in a garage with a great idea, all the way to major research and development places in the government sector.’

As an emerging technology with a huge potential and an even bigger demand it is perhaps inevitable that some players are tempted to hype claims for yields as they search the markets for development finance. Some claims will inevitably turn to dust as the real commercial winners emerge and some are revealed as dead ends. But with the range of technologies available and a ground swell of R&D investment cash, confidence among developers is high that algae-derived biofuels will soon be able to compete with fossil fuels.

Jeff Decker is a freelance journalist covering energy and aviation and living in Oshkosh, Wisconsin.
e-mail: rew@pennwell.com

Source:http://www.renewableenergyworld.com/rea/news/article/2009/06/blooming-biofuel-how-algae-could-provide-the-solution?cmpid=WNL-Wednesday-June24-2009

Selasa, 23 Juni 2009

Kemiri Bisa Jadi Bahan Bakar Alternatif

BANDUNG - Salah satu bumbu dapur yaitu kemiri jika diolah bisa menjadi alternatif bahan bakar untuk kendaraan. Tidak percaya? Saat ini Institut Tekhnologi Bandung sedang mengembangkan hal itu.

Menipisnya cadangan minyak bumi membuat ITB mengembangkan bahan bakar yang diambil dari bahan-bahan mentah seperti kemiri sunan, kemiri dan biji karet.

Meski menurut standar SNI, kandungan minyak kemiri sunan, kemiri, dan biji karet belum memenuhi spesifikasi untuk dijadikan bahan bakar mesin, namun pihak ITB menggunakan teknologi hiderogenasi.

"Kita coba terapkan dengan teknologi hiderogenasi, dan hasilnya bisa memenuhi kriteria SNI," ujar Ketua Kelompok Riset Biodiesel ITB Tatang Hernas Soerawidjaja disela penandatanganan kerjasama PT BMW Indonesia di kampus ITB, Bandung, Rabu (27/5/2009)

Menurut dia, dengan teknologi yang cenderung murah biaya itu, maka hasil yang didapat akan maksimal. "Tim riset perkebunan sudah meneliti, dari sisi ekonomi bahan bakar ini sangat menguntungkan," tegasnya.

Rencananya, bahan bakar dari kemiri sunan, kemiri dan biji karet ini akan digunakan sebagai bahan bakar biodiesel.

Jika penelitian yang dilakukan ITB ini bisa dikembangkan, maka bukan tidak mungkin akan menjadi sumber energi alternatif bagi kendaraan di Indonesia. Sekarang tinggal bagaimana pemerintah menanggapi ide-ide cemerlang para peneliti tersebut.

sumber:http://autos.okezone.com/index.php/ReadStory/2009/05/27/52/223663/kemiri-bisa-jadi-bahan-bakar-alternatif

Senin, 22 Juni 2009

A Bio-Ethanol Fuel Program for Armenia

BY KENDRICK WENTZEL and AREG GHARABEGIAN

Renewable Resources and Energy Efficiency (R2E2) Fund of Armenia commissioned a feasibility study to determine possibilities of producing bio-ethanol in Armenia. This study was financed by the World Bank as a grant from the Global Environment Facility (GEF). Enertech International, Inc. and BBI International from US in cooperation with DHD Contact LLC of Armenia were awarded a contract to conduct this feasibility study.

As a land-locked country without any significant deposits of crude oil, Armenia is 100 percent dependent upon fuel imports to meet a growing demand for gasoline. Moreover, increases in world crude oil prices are being passed onto and reflected at retail gasoline outlets. In addition, prices for gasoline in Armenia are expected to increase at an even more rapid rate in the future than world markets. Moreover, natural gas prices from Russia are expected to increase in the future making CNG more expensive and causing upward pressure on gasoline prices as well. Such trends will make alternative motor transport fuels such as bio-ethanol more competitive in the market. Finally, bio-ethanol for blending as a motor transport fuel has the potential to reduce imports of gasoline through displacement, reduce foreign exchange drains, increase energy security of supply in a traditionally unstable region of the world, create value from domestically grown bio-ethanol feed stocks on surplus lands, create jobs in depressed rural areas, and improve local air quality particularly in congested urban areas.

One of the key factors for determining the overall success of a bio-fuels program is the availability of appropriate feed stocks at attractive prices. Corn and sugarcane serve as the major feed stocks for current bio-ethanol production throughout most of the world, but virtually any feedstock with high sugar or starch content can be utilized for bio-ethanol production. Armenia’s climatic conditions are not suitable for sugarcane production; however, there are several alternative crops suitable to Armenia’s climate for cultivation on available agricultural land that is not intended for the production of food crops. In particular, Jerusalem artichoke has been identified as a crop with great potential as a feedstock for bio-ethanol production in Armenia in the near to midterm. It can be cultivated on land that is currently fallow. Moreover, it possesses relatively high carbohydrate content, especially in its root tuber, thereby making it extremely suitable for bio-ethanol production. Farmers grow Jerusalem artichoke for their own use, but there is no large scale production due to the small market for it.


Tanks to be used for processing JAs.
Similarly, feed corn for livestock and poultry is a suitable crop for the soils and micro climates found in several parts of the country. Feed corn can be processed in such a manner as to extract all of the starches contained in the feedstock corn for conversion into bio-ethanol while at the same time producing important animal feed co-products. The byproduct will have a higher percentage of protein, fats, and carbohydrates than that found in unprocessed dry corn which is currently the principal animal feed used by livestock and poultry producers in Armenia. Similar byproducts can also be produced using Jerusalem artichoke.

Presently there is no large scale feed corn production in Armenia, but there are some to increase production to reduce the import and to develop a local market for feeding livestock. These plans call for having 10,000 hectares under feed corn production in Tavush District in northern Armenia.

The preliminary feasibility study suggested developing two very different types of bio-ethanol plants: one based on Jerusalem artichoke to be situated in the vicinity of Sisian and Goris in Syunik District; and a second plant based on feed corn grown in Tavush District. These two districts have high rural unemployment rates and have microclimates suitable for the production of the identified feed stocks.

There are a number of advantages and disadvantages that should be recognized from the outset when considering a decision on whether or not to implement a nationwide bio-ethanol program. With respect to advantages, bio-ethanol can be produced from domestic renewable feedstock sources, helps to stimulate agricultural employment in depressed rural areas, and can provide farmers and bio-ethanol processing plant owners with a dependable revenue stream. In addition, bio-ethanol is non-toxic and biodegradable can lower air emissions in major metropolitan areas such as Yerevan and Gumri when combusted as a motor transport fuel, can reduce overall greenhouse gas emissions, and can reduce foreign exchange drains on the Armenian economy. Lastly, the bio-ethanol that leaves the facility needs no further processing other than blending with gasoline.

On the other hand, a nationwide bio-ethanol program could face several challenges. Ethanol has a lower energy content value compared to gasoline and could face an initial public acceptance hurdle. In addition, higher blended levels of ethanol in gasoline (e.g., greater than 10 percent) are not compatible with existing non-flex fuel vehicles, pipeline infrastructure, distribution systems, or tanks and pumps at retail outlets. If the imported gasoline is not of a high quality or contains moisture, there will be performance and maintenance problems with automobiles that are operated with fuels mixed with bio-ethanol and the program will in all likelihood be perceived as a failure by the consumer public. In addition, no markets currently exist in Armenia for useful animal feed by-products from bio-ethanol conversion processes.

Assessment of Potential Bio-Ethanol Market Size and Estimated Ceiling Price
A forecast of bio-ethanol production market size was conducted to achieve the 5 percent blending levels by volume with gasoline. These projections formed the basis of the decision to develop 14,000 tons per annum of bio-ethanol production capacity by 2014. Therefore, the recommended capacity sizes for each of the two proposed plants is 7,000 tons per year.

Construction of a 7,000 metric tons per year bio-ethanol plant would cost $17 to $19 million (2008 dollars) depending upon specific conversion technology chosen by the developer. The major variables for the financial analysis of a bio-fuel project are bio-ethanol price, feedstock price, co-product price, and energy costs.

Due to the lack of reliable price information for the proposed feed stocks (Jerusalem artichoke and feed corn), the financial analysis was necessarily conducted by setting an acceptable rate of return on investment (i.e. – 15 percent) and solving for the cost of the feedstock that would generate this return over time. A variety of scenarios was analyzed to assess the sensitivity of the projected results to the different assumptions.

If yields are around 40 to 45 metric tons per hectare, pricing for Jerusalem artichoke is expected to be approximately $50 per metric ton (15 AMD per kilogram). The financial model showed that the processing plant can pay up to $88 per metric ton for Jerusalem artichoke and still achieve a Return on Investment (ROI) of 15 percent. Analysis was based on using a bio-ethanol price of 410 AMD per liter ($1.34 per liter).

The 2008 price for imported feed corn into Armenia was approximately $400 per metric ton (120-140 AMD/kg). This price is significantly above the world market price of corn, likely at least in part due to high transportation costs and small trading volumes. Results of the analysis indicate that while higher yield seeds are now being used by local farmers, the upward pressure on corn production costs especially from the higher cost of fertilizers, weed suppressants, and diesel fuel for tractors is offsetting enhanced revenues from higher crop yields. However, given that the financial model was set to achieve a minimum ROI of 15 percent, financial projections indicated that the processing plant could only afford to pay up to $393 per metric ton for feed corn and still remain attractive to potential investors.

Land Availability for Feedstock Production
On average, only 70 percent of tillable land in Armenia is presently being used. In some Districtes such as Vayots Dzor, only 23 percent is used but in Gegharkunik up to 90 percent is used. Guiding principles for identifying suitable land during conduct of the bio-ethanol program assessment were to:

Focus on surplus lands only
Consider lands from the Soviet era that are not presently being utilized for food production, Primarily concentrate on marginal lands between 1,000 and 2,400 meters in elevation or else saline soils that cannot be utilized for food production regardless of elevation,
Rule out lands that are not accessible by mechanized farm equipment, or
Include endangered species of plants or animals.

An extensive study was conducted to determine the best locations for growing acceptable feedstocks from the perspective of prevailing climatic conditions, soil suitability, elevation constraints, and possible access to irrigation. It was concluded that Sisian and Goris will be the preferred location for growing Jerusalem artichoke and Tavush District for growing feed corn.

There are approximately 16,800 hectares of land immediately available for expanded agricultural production in the vicinity of Sisian and Goris. Approximately 87,600 metric tons of Jerusalem artichoke is needed for production of 7,000 metric tons of bio-ethanol. Given an expected yield of 40 metric tons per hectare, approximately 2,190 hectares of land would be required. This would still leave 87 percent of the available land for food crop production in the future.

Similarly, there are 10,370 hectares of unused agricultural land presently available in Tavush District. The dry mill with corn fractionation plant will process about 23,000 metric tons of feed corn per year for producing 7,000 metric tons of bio-ethanol per annum. Given an expected average yield of 4 metric tons per hectare in Armenia, 5,750 hectares of land would be needed. This would still leave 45 percent of the available land for future food crop production.

Anticipated Developmental Impacts
Rural development is another important driver for worldwide support of bio-fuels. Since feed stocks are grown on agricultural land, increasing demand results in increased economic development in rural areas; however, bio-fuels policies have faced increased scrutiny in recent years. The two most controversial topics are the food versus fuel issue, and the actual level of environmental benefits accruing from bio-ethanol programs. While producers benefit from feedstock price increases, consumers can suffer from increased costs for food supplies. This is particularly true for less economically developed populations where the share of income used for food is high. In reality, the demand from bio-fuels is far from the biggest driver for increasing food prices. The increase in the price of energy has a much larger impact on food prices.

Moreover, the proposed projects are expected to have significant and positive developmental impacts and benefits to Armenia. The following are most important benefits:

A bio-ethanol feedstock production program of this magnitude will have an instant and measurable positive economic and job creation impact upon the two most depressed parts of Armenia.

Most of the construction work would be provided by local Armenian contractors; overseen by an international contractor with experience in bio-ethanol plant construction. New jobs would be created both directly and indirectly. These jobs will require new skills and training to operate and maintain the two plants.

Substantial tax revenues would be generated, as well as money spent in local rural economies.

Environmental Impacts
Bio-ethanol production can have positive and negative impact on the environment. Considering all of the potential bio-ethanol fuel cycle environmental aspects, it can be concluded that on the whole the project will have a favorable impact on the environment in Armenia, particularly in urban areas such as Yerevan and Goris. The main positive aspect of the proposed project will be the reduction of air pollutions. With a nationwide program goal of 5 percent ethanol blending it is anticipated that carbon dioxide emissions will be reduced by 3,300 metric tons per year or by at least 15 percent of the level of such emissions in 2007. Considering a projected increase in the number of vehicles that will be added to the current stock in the future, this anticipated emissions reduction will have a tendency to increase over time.

Other environmental concerns are mostly related to land use changes triggered by higher agricultural product prices. The higher prices provide an incentive to increase production, which in many cases means expanding the amount of land used for agriculture. If the expansion land is currently forested, turning it into arable land will require deforestation resulting in environmental harm which will likely outweigh the benefits of bio-fuels for many years. However, here again, bio-ethanol production as envisioned for Armenia will result from greater utilization of unutilized crop lands or marginal lands and not result in reductions of forested lands

source:http://www.asbarez.com/2009/06/19/a-bio-ethanol-fuel-program-for-armenia/

Small-scale biofuel production holds more promise, says USAID

DECENTRALIZED biofuel production, or small-scale factories built on degraded or underused lands, has the potential to provide energy to half a billion people living in poverty in rural Asia.

The report, Biofuels in Asia: An Analysis of Sustainability Options, sponsored by the United States Agency for International Development (USAID) stressed that decentralized production offers a “promising avenue” to enhance the energy independence of Asian nations in a manner that is also commercially viable and without large subsidies.

“Local production and use of biofuels could significantly benefit rural communities by providing access to energy for the millions currently relying on either expensive fossil fuels or traditional biomass for cooking, lighting and transportation needs,” the report noted.

The report argued that large-scale biofuels production could become less viable in view of the global economic crisis. Even under optimistic assumptions of crop expansion and deployment of second-generation technologies, biofuels will meet no more than 3 percent to 14 percent of the total transport fuel demand in Thailand, Vietnam, Malaysia, the Philippines, China, India and Indonesia by 2030.

The USAID noted that biofuels currently supply less than one percent of transport fuel worldwide and approximately three percent in developing Asia.

“Smart incentives are needed to promote sustainable biofuels. The use of mandates and targets has led to a rapid scale-up of production, locking in unsustainable, inefficient practices,” the report said.

“Instead, incentives should target only sustainably produced biofuels, promote best practices, and facilitate development of more efficient second- and third-generation technologies,” the report stressed.

The USAID report encouraged countries going into biofuels production to ensure that producers use nonfood feedstock grown on underutilized land. Biofuels producers must also avoid converting forests and peatlands at all costs and to plant instead on degraded or underutilized lands using high-yielding feedstock that require minimal inputs.

Also, the report noted that “positive social impacts” are not a guaranteed outcome of the large-scale deployment of biofuels.

“There is widespread evidence across Asia that the development of biofuels can perpetuate poor labor rights and working conditions, threaten lands used by indigenous and marginalized communities, and precipitate local conflicts over resources,” it said.

Compared with large-scale biofuels production, small-scale biofuels production for local use may deliver greater social benefits, including improvement of rural livelihoods, support of local industries, and a lower tendency toward exploitation of workers and co-opting of land from indigenous peoples.

The report was presented by Pradeep Tharakan, one of its authors, at the Asia Clean Energy Forum held at the Asian Development Bank in Ortigas City late last week.

The report focused on China, India, Indonesia, Malaysia, the Philippines, Thailand and Vietnam. It analyzed key trends and concerns and highlighted sustainability options for biofuel production.

The Philippines is encouraging foreign investors to go into biofuels production. Just recently, two Korean companies signed agreements with the Philippine government for the construction of biofuel plants and development of idle lands for feedstock.

Environment Plasma Co. Ltd. and Eco Solutions Co. Ltd. have agreed to invest $600 million for the construction of biofuel plants and development of lands for sugarcane and jatropha.

The Philippines is keen on producing more biofuel in view of Republic Act 9367 or the Biofuels Act of 2006. The law mandates the blending of 1 percent locally-sourced biodiesel in all diesel products sold by May 2007, and 5 percent locally-sourced bioethanol blend in all gasoline products this year, and 10 percent bioethanol in 2011.

source:http://businessmirror.com.ph/home/sports/12004-small-scale-biofuel-production-holds-more-promise-says-usaid.html

Cassava: A BioFuel

By Godfrey Eneas

Cassava has become an important biofuel crop. Apart from its traditional role as a food crop, Cassava has increased its value as a fuel commodity. The following article highlights the variety of uses the cassava has. In recent years cassava imports have been increasing as a result of the large Haitian population in The Bahamas. In the Haitian diet, cassava is an important source of starch.

The technology for converting cassava into the biofuel Ethanol is being perfected and, in time that technology could be used here to convert Bahamian grown cassava into Ethanol.

Booming outputs meet flagging markets
The economic potential for cassava — a crop crucial for food security, especially in Africa — remains largely untapped, despite constant growth in output. Nevertheless, a range of markets, including consumer, industrial, local and international, are important as this tuber strives to become competitive.

Which crop grown in Africa produces twice as much as maize and three times as much as millet or sorghum? And which crop has seen Africa emerge as overall leader, accounting for more than half of the world output, with Nigeria as the biggest producer? Which same crop has seen production levels triple on the continent over the past 50 years? And now covers one-third of the dietary needs of its population? The answer is cassava. In the past few decades, this tuber has quietly taken over thousands of hectares and become the staple food of over 200 million Africans, or more than one-quarter of the continent’s population.

According to FAO figures, Africa produced 103 mt of cassava tubers on 18 million ha of land in 2004. This shrub, with its long stems and parasol-shaped leaves is now as common in Sahelian countries as it is in the more humid climes of Central Africa and the Gulf of Guinea, where it has traditionally thrived. Output varies greatly between regions, ranging from 1.8 t/ha in Sudan to an average of 10.6 t in Nigeria (which still falls way behind the yields achieved in the Caribbean: 16.6 t in Barbados alone). Well established in countries such as the Democratic Republic of Congo (DRC), which for a long time was Africa’s leading producer, the crop has now spread to southern Africa (Malawi, Zambia) at the expense of maize. Here, where HIV/AIDs is killing many farmers, families are turning to crops which require less labour.

Insuring against famine
A number of other factors explain this rapid expansion, especially on smallholdings run by poor farmers, where cassava is often grown together with other crops. Cassava has the advantage of being relatively undemanding, and will thrive on poor and even tired soils, where few other crops will grow. In places where land is scarce, it also serves as food security for many villagers vulnerable to malnutrition. With cassava, they can be more confident of having a low-cost, plentiful supply of calories than they would have had they grown cereals. For farmers living close to towns, it is a valuable cash crop, with a flourishing market. In West Africa, its development has been further helped by the rapid expansion of towns and by an initiative launched by the International Institute of Tropical Agriculture (IITA), which has distributed new, more productive varieties that are resistant to a number of diseases as well as to drought.

Cassava, fuel of the future?
At a time when oil prices are soaring and global reserves dwindling, the spotlight is turning to ethanol made from fermented cassava starch, a particularly promising resource. Similar to other types of ethanol obtained from agricultural products, it can be used to substitute between 10% and 25% of petrol in vehicles with standard engines, and up to 100% in vehicles whose engines have been adapted.

Brazil, the world’s leading producer of these substitute fuels or biofuels, makes more than 120 million hl per year from sugarcane and cassava. In Thailand and China, several projects for manufacturing cassava-based biofuel on an industrial scale are under way. In Africa, Nigeria is following suit and in early 2006, a law is expected to approve the use of 10% biofuel in petrol, thereby cutting both the country’s oil bill and pollution levels. In the short term, the fuel will be imported from Brazil, but in the longer term it will be manufactured locally.

The flip side of the coin is that when this crop — vitally important to a number of regions — is hit by disease, the result is famine. That was seen all too clearly when the cassava mosaic virus devastated production in Uganda during the 1990s. Burundi, DRC and Rwanda are currently grappling with the same disease and programmes to distribute resistant varieties are attempting to curtail the epidemic before it takes hold.

This plant has long been neglected by research in favour of cereals, but its recent rapid success and its key role in feeding a number of regions go a long way towards explaining the renewed attention it is enjoying today. In partnership with the IITA, The New Partnership for Africa’s Development (NEPAD) has launched the Pan-African Cassava Initiative to encourage projects based on “the use of cassava as a food security crop and as a weapon against poverty”.

However, the economic importance of cassava is still disproportionately low given the major role it plays in agriculture and food supply. Once the hydrocyanic acid has been removed from the bitter varieties, the edible leaves are rich in protein and the tubers lend themselves to a wide range of preparations: chips, flour, semolina and cassava meal (gari, attiéké, foufou, chikwangue) to name a few.

According to the IITA, close to one-third of all cassava is eaten fresh. The remainder needs to be processed quickly, as the tubers keep for barely 2 days under normal storage conditions. The Collaborative Study of Cassava in Africa (COSCA), conducted in the 1990s, found that only 20% of cassava-producing villages can be reached by motorised transport. Generally, farmers have to travel more than 10 km to take their heavy loads to market. In DRC, Africa’s second largest producer, that is the case for seven out of ten villages.

Long preparations
Before cassava can be conserved and sold, it must first be processed. This task generally falls to women, who soak and grate it, then dry the roots. It is a long and tedious job, especially in rural areas where there are no machines, and the high input in terms of labour is not reflected in the often low price fetched by the finished product. Small businesses equipped with machinery are springing up in some towns, especially in countries around the Gulf of Guinea, and this encourages a steady flow of production from farmers in the outlying areas. COSCA has estimated that a mechanical grater cuts the processing time by half and therefore increases profits. In West Africa, the IITA has developed and distributed a number of machines, but they are still not sufficient, especially in the villages, to increase the commercial viability of a sector which in any case suffers from poor organisation.

Beyond production
Between 1996 and 2003, cassava production doubled to reach a total output of 3.9 mt in Benin, while the per-ha yield increased by 25%. This strong performance was largely the result of the government scheme “a billion for cassava” which offered credits, fertiliser and cuttings of improved varieties to producers in a bid to encourage them to increase production. But nothing was done to improve marketing at the same time.

Poorly organised and lacking in processing equipment, the cassava sector proved unable to absorb the extra tonnes of cassava, and farmers found themselves forced to sell their crops off cheaply — in some cases, they were unable to sell them at all. Exports of cassava chips to Europe for livestock fodder, have also been falling since 2002 as European farmers have turned to less costly cereal-based feed. In 2004, cassava production suddenly fell by half, with the result that the ethanol factory built by a Chinese group was unable to find enough raw material. Farmers say they are now ready to restart production if they can be assured of sales for their crop.

But markets exist in the increasingly populated urban areas, as do technologies offering consumers cassava-based products that are easy to use. Good examples can be found in the Caribbean, the Pacific and South America, above all in Brazil, which has long been the world’s leading cassava producer. Here, cassava is prepared in a host of different ways, often on an industrial scale, and the products — chips, cakes, frozen dishes — are sold in shops. In Brazil, one chain of stores sells cassava cheese bread. Cassava flour is used as a partial substitute for wheat flour to make traditional bread. In 2002, the Brazilian Congress even passed a law making it mandatory for bread to contain at least 20% cassava flour and 40% in the case of pizza. The idea was to reduce costly wheat imports and develop the commercial potential of local crops. Africa still lags way behind in this respect, though Nigerian bakers are now required to use 10% of cassava flour in their bread (see Spore 117).

A number of techniques developed in Latin America could be used in Africa. Colombian researchers have managed to extend the shelf-life of fresh cassava roots to 3 or 4 weeks by dipping them in wax or paraffin.

Livestock fodder also offers interesting potential. In Africa, less than 2% of cassava is used to feed animals, compared with 30% in Latin America. In Cameroon, researchers estimate that poultry farmers could cut production costs by 40% if they used cassava as part of their chickens’ diet. On a global scale, animal feed represents the main outlet for cassava. Thailand exports an annual 4 to 5 mt of it, mostly to the European Union.

Finally, there are the many industrial uses to which this tuber lends itself. Starch, the main product to be made from cassava, is used in the food and textile industries as well as in the pharmaceutical and rubber sectors. In Africa, few companies make starch, and production does not even supply domestic needs. With the rise in oil prices, the manufacture of cassava-based ethanol, already widely used in Brazil to replace additives in petrol or as a biofuel, could constitute another interesting outlet.

source:http://www.jonesbahamas.com/?c=47&a=7415

Produsen Ethanol Usulkan Pajak Ekspor Tetes Tebu

JAKARTA - Melambungnya harga tetes tebu di pasaran, baik lokal maupun internasional membuat harga produsen Ethanol kian terpukul.

Hal tersebut disampaikan VP Marketing PT Molindo Raya Industrial, Donny Winarno kepada wartawan di Gedung DPR MPR Senayan, Jakarta, Rabu (26/5).

"Kami pernah mengusulkan agar dikenakan pajak ekspor untuk tetes tebu untuk menjaga laju ekspor yang terus meningkat, padahal pasokan dalam negeri sangat minim," ungkap Donny.

Donny mengatakan, pengenaan pajak ekspor ini sangat perlu guna memenuhi pasokan tetes tebu dalam negeri. "Kami produsen Ethanol sangat membutuhkan bahan tetes tebu. Kalau stoknya ada maka kami masih bisa beroperasi, namun jika sudah tersedia lagi maka aktifitas kamipun bisa terhenti," tandasnya.

Direktur Pengembangan PT Sinar Mas Energi Alternative Roy Hendroko Setyobudi pada kesempatan yang sama mengatakan tahun lalu rata-rata stok tetes tebu dalam negeri 1,4 juta liter. Dipakai oleh produsen Ethanol 600 ribu liter, untuk pakan ternak 600 ribu liter, ekspor hanya 200 ribu liter.

Sekarang total ekspor tetes tebu oleh produsennya sudah meningkat. Rata-rata volume ekspor bisa mencapai 800 ribu liter karena harga dalam negeri kurang menarik . Mereka (produsen tetes tebu) hanya menyisahkan 200 ribu barel untuk pasokan dalam negeri.

"Kalau keadaan ini terus berlarut, takutnya stok tetes tebu dalam negeri tidak ada," keluhnya. (fdl)(/)

sumber :http://www.wartaone.com/articles/4209/1/Produsen-Ethanol-Usulkan-Pajak-Ekspor-Tetes-Tebu/Halaman1.html

Rugi, Produsen Ethanol Kejepit Harga Bahan Baku

Jakarta, IEW.- Produsen ethanol semakin terjepit akibat harga bahan baku ethanol tetes tebu yang terus melambung rata-rata Rp 6.000 per 4 kg, sementara harga harga jual ethanol ke Pertamina (Persero) masih Rp 5.000/liter FoB (freigh on board). Hal tersebut diungkapkan Direktur Pengembangan PT Sinar Mas Energy (Produsen Ethanol), Roy Hendroko Setyobudi, sebelum mengikuti rapat dengar pendapat (RDP) produsen bahan bakar nabati (BBN) dengan Komisi VII DPR RI, Gedung DPR MPR Senayan, Jakarta, Rabu (27/05/2009).

“Harga jual Ethanol Rp 5.000 per liter FoB ke Pertamina sudah terjadi sejak 2006. Padahal, crude dan BBM selalu naik turun. Saat ini kami (Produsen) selalu menjual rugi produk ini,” ungkap Hendroko.

Ia mengatakan, padahal untuk menghasilkan satu liter ethanol diperlukan 4 kg tetes tebu. “Sekarang ini harga jual tetes tebu terus melambung, harga terakhir Rp 1.500 per kg. Berarti nilai bahan baku tetes tebu dala satu liter Ethanol sebesar Rp 6000 per 4 kg,” jelas Hendroko.

Keluhan serupa diungkapkan Vice Presiden Marketing PT Molindo Raya Industrial, Donny Winarno. Menurut Donny, harga jual ethanol Rp 5.000 per liter sudah tidak relevan lagi dengan harga bahan baku serta ongkos produksinya.

“Harga bahan baku tetes tebu sudah Rp 1,500 per kg. Untuk mendapatkan 1 liter Ethanol dibutuhkan 4 kg tetes tebu. Total harga bahan baku Rp 6.000 per 4 kg. Belum lagi ongkos produksinya. Padahal harga jual Ethanol hanya Rp 5000 per liter,” jelas Donny.

Donny menambahkan subsidi Ethanol yang hanya Rp 1.000 per liter masih belum cukup mengimbangi keseluruhan ongkos produksi Ethanol. “Memang untuk membuat Ethanol selain tetes tebu bisa juga memakai ubi kayu (singkong), tetapi bahan baku ubi singkong masih belum banyak,” tandasnya. (sunandar)

source :http://indonesiaenergywatch.com/info-info/rugi-produsen-ethanol-kejepit-harga-bahan-baku.html

Ethanol: Does It Help Or Hurt Greenhouse Gas Emissions?

EPA Administrator Lisa Jackson, Energy Secretary Steven Chu, and Agriculture Secretary Tom Vilsack held a telephone press conference 10 a.m. Tuesday to announce their proposed rulemaking on the Renewable Fuel Standard under the Energy Independence and Security Act of 2007 (EISA). That established a requirement that to qualify for subsidies, ethanol and other biofuels would have to reduce lifetime greenhouse gas emissions by 20% versus gasoline.

They proposed that "indirect land-use changes" be included in the analysis of ethanol's effects. Carbon dioxide levels rise when tropical rainforests are destroyed to increase world-wide corn production to replace the corn the U.S. used to export that now goes into ethanol production. However, they proposed to exempt about 15 b. gallons of production by grandfathering facilities in place or under construction when EISA was enacted on December 19, 2007. "Indirect land-use" would count against ethanol, but because it remains scientifically uncertain, a peer review will be conducted that could let ethanol off the hook. Clean Air Watch President Frank O'Donnell said, "EPA has left open the option that an exception to good science could be made in the case of a favored special interest." After watching every presidential campaign in recent memory troop to Iowa to take the ethanol pledge, it's no wonder President Obama left that option open.

Under the proposed rule with "indirect land-use," EPA said corn-based ethanol produced by a natural gas powered "dry mill" would reduce emissions by 16%, short of the 20% required by EISA. The Renewable Fuels Association was quick to point out that the same calculation without "indirect land-use" would rate corn-based ethanol as reducing emissions by 61% compared to gasoline.

The proposed rule would also look at how much coal or biomass is used in ethanol production. The more coal, the less overall greenhouse gas emissions benefit. In fact, the proposed analysis using "indirect land-use changes" and coal would probably show ethanol emissions exceed those of gasoline.

Needless to say, ethanol supporters in Congress are gearing up for battle. Last Thursday, Senator John Thune (R-SD) introduced S.943 to allow the EPA to waive any requirement to use "indirect land-use changes." He chided the "activist nature of the current EPA."

The White House offset some of the political damage from the proposed rulemaking by forming an interagency group charged with speeding up biofuel subsidies, increasing the availability of ethanol as gas stations, and promoting the production of cars that can run on higher ethanol blends.

EPA will collect public comments for 60 days following the publication of the proposed rulemaking in the Federal Register, and will hold a hearing at 10AM June 9.

environment
Pete Davis's blog
On 16:27pm, May 7th, 2009 Mr. Econotarian (not verified) said:
Just tax carbon
The truth is that we don't know how much CO2 is used to make Ethanol. A good deal of heat must be used to drive off water during part of the process.

A carbon tax on all fossil fuels would be the economically smart and efficient way to reduce carbon output. That way if a lot of fossil fuels were used in the production of Ethanol, that would be priced into the Ethanol. If that made it cheaper to use nuclear power to generate electricity for electric heaters, then the Ethanol production process would be less CO2 emitting.

If anyone is concerned about growing corn, the US should drop sugar import quotas, because sugar cane is a much better way to produce sugar than fructose from corn, both for biofuels and food sweetening.

All these "fuel requirements" is just paying of agribusiness while trying to look green.

Source:http://www.capitalgainsandgames.com/blog/pete-davis/891/ethanol-does-it-help-or-hurt-greenhouse-gas-emissions

Jumat, 19 Juni 2009

Clean energy revolution: Be a part of it!

A clean energy revolution is the solution to climate change. It will pave the way for cleaner energy and a safe environment for everyone.

Our comfortable lives are the result of a stable climate which has allowed us to thrive and evolve through time. Along the way, the industrial, technological and information revolutions have enriched our world. They tapped energy sources, provided food and water, and created impressive technology.

However, our progress has come at a hefty price. We cause climate change by burning fossil fuels, clearing land and logging forests. We pollute our environment and harm our health.

We need a clean energy revolution! We need to take action to protect our health, our future and the well-being of our planet.

Climate change will pose significant stress and challenges in the Asian region. Asia has more than 60% of the world's population. Natural resources therefore are already under stress and the resilience of many Asian countries to climate change is poor. Several countries are socio-economically dependent on natural resources such as water, forests, grassland and fisheries.

The only way that we can stop the worst effects of climate change in Asia is by using less energy and by making sure that the energy that we do need comes from clean, renewable sources.

Renewable energy has the potential to meet our energy needs many times over. At present, we get less than 1% of our electricity from the wind, ocean and sun.

Solar Energy

Solar energy systems convert the energy from sunlight into electricity. Solar energy can be used to power homes and commercial buildings just like conventional electricity from the grid. It is a commercially proven and viable renewable energy technology. Greenpeace and industry research shows that with government support the solar industry could supply electricity to over 2 billion people globally in the next 20 years. By 2040, solar power could supply nearly 25% of global electricity demand. (reference-solar gen report?) Solar energy systems are silent, effective and comparatively non-polluting, so they are great for urban areas.


Wind Energy

Beautiful, low-impact and non-polluting, wind energy is already a success story in many countries. Wind turbine farms supply electricity to millions of people, employing tens of thousands of people and generating billions of dollars in revenue. It is the world's fastest growing renewable energy technology, on track to provide 12% of global energy by 2020. There is enough power in the wind across the earth's six continents to supply four times the world's energy needs. Today, wind power already supplies electricity to around 14 million households. That's more than 35 million people.

Biomass

Biomass is any kind of organic matter produced by plants and animals. Biomass energy systems convert this matter to fuel for energy.
Organic matter is turned into fuel using various technologies that convert solid material such as bio-degradable agricultural and wet food wastes to gas. The fuel is then converted to energy using the same technologies used for fossil fuels. The difference is that biomass fuels:

are a renewable resource that can be replaced or grown each year;
recycle waste water and materials and reduce pollution from untreated waste streams;
capture and use greenhouse gases before they can escape into the atmosphere.

Small Scale and Micro-Hydroelectric Energy


Hydroelectric energy is water energy. Moving water contains an enormous store of natural energy, whether the water is part of a running river or waves on the ocean. We support small-scale hydro systems that can produce plenty of electricity without needing the large dams. Classified as "small", "mini" or "micro" depending on how much electricity they produce, small hydro systems capture the river's energy without diverting too much water away from its natural flow.

The generation of hydroelectric power does not produce greenhouse emissions. It's a renewable energy resource because water is constantly replenished through the earth's hydrological cycle. All a hydroelectric system needs is a permanent source of running water, like a creek or river.
The World Energy Council estimates that wave power could produce two terawatts of energy each year. This is twice the world's current electricity production and is equivalent to the energy produced by 2000 large oil, gas, coal and nuclear power stations. The renewable energy within the world's oceans, if it could all be harnessed, would satisfy the present world demand for energy more than 5000 times over.

Small-scale hydropower is an environmentally benign energy source with large growth potential, but it won't reach this potential unless we give it a chance.

Geothermal

Geo (Earth) thermal (heat) energy means harnessing heat from inside the Earth. Our planet's core is incredibly hot – 5,500° Celsius (9,932° F) by recent estimates – so it's no surprise that even the top three metres of the Earth's surface stay at a nearly constant 10-16° Celsius (50-60° F) all year round. Plus, thanks to various geological processes, at some places much higher temperatures can be found in some places.?

Where geothermal hot water reservoirs are near the surface their hot water can be piped directly to where the heat is needed. This is one way geothermal is used for hot water, to heat homes, to warm greenhouses and even to melt snow on roads.

Geothermal power generation causes virtually no pollution or greenhouse gas emissions. It's also quiet, and extremely reliable. Geothermal power plants produce electricity about 90 percent of the time, compared to 65-75 percent for fossil fuel power plants.

Unfortunately, even in many countries with abundant geothermal reserves, this proven renewable energy source is being massively under utilised. The Philippines is the world's second largest geothermal energy producer and the largest geothermal energy user.

Nuclear energy: Not a Solution to Climate Change

The nuclear industry claims that nuclear energy is a clean alternative to fossil fuels. It is not. Nuclear power did not suddenly become safe and clean. It is just as radioactive and dangerous as it always was. Despite claims of the uranium and nuclear industries, nuclear power is not a solution to climate change.
Nuclear power is risky at every stage of development, from mining the uranium to producing the energy to the dangers of transporting and storing radioactive waste. It is not a clean or safe industry.

Creating nuclear power is expensive and its bi-products can cause cancer.
The best investment for our planet's future is clean renewable energy, such as solar and wind, combined with technologies that vastly improve energy efficiency.

source:http://www.greenpeace.org/seasia/en/asia-energy-revolution/solutions

Energi Masa Depan yang Berkelanjutan untuk Asia Tenggara akan Menghemat Uang dan Energi

Singapura — Investasi di bidang energy terbarukan untuk masa depan akan menghemat waktu 10 kali dari biaya penggunaan bahan bakar konvensional (fosil). Hal tersebut akan menghemat US$180 milyar setiap tahun dan mengurangi emisi CO2 50% pada tahun 2030 menurut laporan bersama Greenpeace dan The European Renewable Energy Council (EREC) yang di terbitkan satu hari sebelum pertemuan menteri-menteri energi negara ASEAN

Sepuluh menteri energi yang tergabung dalam negara-negara ASEAN sedang mendiskusikan pengembangan energi masa depan di wilayah ASEAN, dengan solusi yang salah, memerlukan biaya mahal, dan sangat berbahaya yang menjadi ancaman bagi pemanasan global dan energi seperti dengan penggunaan pembangkit batubara dan tenaga nuklir.

Laporan Greenpeace dan EREC tersebut menunjukkan bagaimana perekonomian di ASEAN akan diuntungkan dari investasi energi bersih. Greenpeace menyerukan kepada pemerintah di negara-negara ASEAN untuk belajar menjadi pemimpin dan menggunakan energi terbarukan serta mentargetkan energi yang efisien dalam rangka penurunan skala emisi untuk menghindari bahaya pemanasan global.

Dari analisis Global pertama yaitu, ”Investasi masa depan - Rencana energi yang berkelanjutan untuk sektor energi yang melindungi iklim,” (1) menunjukan kekuatan argumentasi ekonomi untuk perubahan dari investasi global terhadap energi terbarukan ( tenaga Matahari, angin, air, panas bumi dan bioenergi), dalam waktu 23 tahun yang akan datang dan terjauhkan dari bahaya batubara dan nuklir. Laporan tersebut memberi rasionalisasi keuangan untuk “Energi [R]evolusi” Greenpeace,” (2) Sebuah konsep untuk mengurangi bahaya emisi global CO2 sebesar 50 % di tahun 2050 sambil mempertahankan pertumbuhan ekonomi global.

“laporan kami menunjukkan bahwa dengan memanfaatkan efisiensi energi secara maksimal, akan membuat perekonomian mengarah ke energi terbarukan. Jika kita melihat energi fosil, saat energi terbarukan merupakan pilihan jangka panjang yang lebih baik. Kita secara pasti akan menghemat triliun dollar; sebesar US$180 milliar pertahunnya, untuk seterusnya dan pada kesempatan yg sama menghindari bencana besar dari dampak perubahan iklim.” ungkap Athena Ballesteros, Juru kampanye iklim dan energi Greenpeace Internasional.

“Asia tenggara adalah wilayah yang memegang peringkat ke tiga penyumbang emisi CO2 di Negara-negara berkembang, setelah Cina dan India. Dan Negara-negara seperti Indonesia bahkan tidak pernah memulai untuk memaksimalkan eksplorasi terhadap potensi energi terbarukan, apapun itu termasuk panas bumi atau tenaga angin, sinar matahari dan biomassa. Sangat masuk rasional bagi Negara kepulauan untuk mengembangkan system energi yang berskala kecil dengan energi terbarukan yang terdesentralisasi daripada melakukan kebohongan dalam promosi dengan menerapkan solusi yang membahayakan seperti nuklir atau teknologi batubara bersih.” Ujar Nur hidayati, Juru kampanye iklim dan energi,Greenpeace Asia Tenggara

Dengan beralih ke energi terbarukan, Asia Tenggara harus bersikap untuk menghemat sebesar US $2 triliun dari biaya energi fosil di 23 tahun yg akan datang dan mengurangi emisi CO2 sebanyak 22% dari tahun 2003. Meningkatkan efisiensi energi dan pengalihan suplai energi kearah energi yang terbarukan sebagai pilihan untuk mensuplai listrik dalam jangka panjang akan mengurangi biaya menjadi sepertiga proyeksi biaya normal.

Dalam Energy [R]evolution sekenario, kemampuan energi batubara akan turun dari 145,600 MW ke 137,900 MW. Batubara, faktanya, akan, mengalami penurunan dari 36,000 MW ke 22,000 MW di tahun 2030. 70% dari pembangkitan menurut skenario [R]evolusi energi akan berbasis pada energi terbarukan. Dan meninggalkan seluruh energi fosil. Kapasitas dari energi nuklir akan berhenti beroperasi pada tahun 2030 ketika pembangkit tenaga listrik yang lama di gantikan pembangkit tenaga listrik yang terbarukan

Analisis dari sisi keuangan ini menunjukkan bahwa merupakan pilihan yang ekonomis untuk mengurangi ketergantungan kita terhadap energi fosil terutama batubara dan beralih pada energi terbarukan yang memiliki kestabilan harga paling tidak untuk 15 tahun. Mengacu pada kuatnya target dari energi terbarukan dan energi efisiensi di sektor energi juga memakan biaya tapi kita butuh itu terjadi sekarang

“Yang paling di butuhkan saat ini adalah untuk menentukan tindakan sekarang. ASEAN harus memiliki hokum iklim dan kebijakan energi. Keputusan di buat pada tahun yang akan datang, akan berlanjut pada tahun 2050. Hanya dengan mengambil energi terbarukan sebagai keputusan, Kita bisa menghindari terjadinya perubahan iklim yang terburuk” tegas Ballesteros.


Laporan yang terkait
Greenpeace Briefing Paper: Climate Change, Energy Security and a Sustainable Energy Future for ASEAN

source:http://www.greenpeace.org/seasia/id/press/press-releases/energi-masa-depan-yang-berkela

Kamis, 18 Juni 2009

Biofools

Pertanian biofuel memproduksi nitrogen oksida. Ini buruk bagi perubahan iklim.

Banyak orang mempertimbangkan penggunaan biofuel sebagai cara mengurangi kelebihan karbon dioksida (CO2) yang disemburkan ke udara oleh alat-alat transportasi di dunia. Teori ini menyebutkan bahwa tanaman seperti tebu, jagung, tepung mengurangi CO2 selama pertumbuhan mereka, jadi membakar bahan bakar dari tanaman ini semestinya tidak ada efek pada jumlah gas ini di atmosfir. Setidaknya, biofuel tidak menyumbang pada pemanasan global.

Teori tidak selalu diterjemahkan ke dalam praktiknya, dan sebagaimana pemerintah berkomitmen pada penggunaan biofuel yang lebih besar, pertanyaan sesungguhnya seberapa green kah bahan bakar ini? Sebuah laporan yang dikeluarkan sejumlah ilmuwan yang tergabung dalam tim yang bekerja atas nama International Council for Science (ICSU), federasi asosiasi ilmuwan seluruh dunia yang berbasis di Perancis.

ICSU melaporkan kesimpulannya bahwa, sejauh ini, produksi biofuel lebih memperburuk keadaan pemanasan global daripada membuat lebih baik. Secara particular, ini mendukung temuan kontroversial dari Paul Crutzen (2007) dari Max Planck Institute for Chemistry di Mainz, Jerman. Dr Crutzen menyimpulkan bahwa kebanyakan analisis telah memandang sebelah mata pada peran penting gas Nitrogen Oksida (N2O) pada pemanasan global. Jumlah gas ini yang dilepaskan dari lahan pertanian biofuel seperti jagung dan anggur kemungkinan menegasi keuntungan yang diperoleh dari berkurangnya emisi CO2.

Meskipun N2O tidak jamak di atmosfir bumi, ini lebih berpotensi sebagai gas rumah kaca dibandingkan CO2 dan bergentayagan lebih lama di udara. Akibatnya, di abad berikutnya, gas ini bakal berdampak memanaskan planet ini 300 kali lebih kuat dibandingkan CO2 pada jumlah yang sama. Robert Howarth, professor ekologi di Cornell University yang terlibat dalam penulisan laporan ICSU, mengatakan bahwa meskipun metode yang digunakan oleh Dr Crutzen bisa dikritisi, namun kesimpulan dasarnya memang benar.

N20 dibuat oleh bakteri yang hidup di tanah dan air dan, pada saat ini, material ini adalah pupuk kaya nitrogen yang digunakan pada pertanian modern. Sejak 1960an jumlah pupuk yang digunakan petani melipatgandakan kadar nitrogen ini, dan tidak semua kelebihan nitrogen ini berakhir di tanaman. Jagung misalnya, digambarkan oleh para ahli sebagai tanaman “pembocor nitrogen” karena akarnya yang dangkal dan hanya mengambil nitrogen untuk beberapa bulan dalam setahun. Ini membuat jagung (yang adalah salah satu bahan baku biofuel) sebagai penyumbang emisi gas N2O yang buruk secara global.

Tapi ini bukan hanya biofuel yang mesti disalahkan. Laporan ICSU menyarankan emisi N2O secara umum mungkin lebih penting daripada yang telah disadari. Studi yang pernah dilakukan sebelumnya, termasuk yang dilakukan oleh International Panel on Climate Change (IPCC), badan ahli yang ditunjuk PBB, mungkin telah salah menghitung dampak signifikansinya—dan menurut Adrian Williams dari Cranfield University, di Inggris, bahkan pendekatan IPCC menyebutkan bahwa penyebab pemanasan global dari kebanyakan wilayah pertanian Inggris didominasi oleh emisi N2O.

Isu yang lebih luas, karena itu, adalah bagaimana manusia telah membajak “siklus nitrogen”, sebagai bagian dari keluar-masuknya gas itu ke dalam atmosfir, untuk penggunaan sendiri. Alan Townsend, dari University of Colorado, Boulder, adalah salah satu dari mereka yang mencoba mengkalkulasi bertambahnya perubahan ini. Yang sepertinya menunjukkan bahwa siklus nitrogen berubah makin cepat dan lebih mendalam daripada siklus karbon, ini membuatnya lebih menarik untuk diperhatikan.

Dr Townsend, dan beberapa yang terlibat dalam apa yang disebut sebagai International Nitrogen Initiative, bertemu di Paris untuk mencoba mengorganisir sebuah assessment internasional tentang apa yang sedang terjadi. Ini akan mencermati nitrogen sebagaimana IPCC mempelajari karbon. Untuk beberapa orang, kekhawatiran perihal nitrogen ini tak diragukan lagi bakal tak lebih dari sekadar suara nyaring dari seruan lingkungan. Tapi, kasus biofuel menunjukkan bahwa tanpa pertimbangan yang memadai pada seluruh gas rumah kaca, tak hanya CO2, terlalu mudah untuk menjerumuskan pada metode yang mahal dalam mitigasi yang sesungguhnya memperburuk keadaan.

Artikel ini diterjemahkan dari The Economist Edisi Cetak (8/4 2009), sepertinya menarik untuk ditanggapi.

Riset Untuk Energi Baru

Persaingan mendapatkan energi baru, akan menentukan masa depan negeri negeri di dunia. Barang siapa lebih cepat meninggalkan ketergantungan pada minyak bumi, ia akan berhasil menjaga kemajuannya. Minyak bumi akan habis. Itu kepastian yang tak terelakkan. Itu pula sebabnya, semua negeri berlomba mencari sumber energi baru. Para pemimpin dan calon pemimpin dunia, kini memasukkan program energi dalam dasar kebijakan yang mereka tawarkan.

Kita simak kampanye Barack Obama, misalnya. Calon presiden dari Partai Demokrat itu, menjanjikan substitusi energi yang cukup signifikan dari energi baru. Obama ingin mengurangi ketergantungan Amerika Serikat dari minyak bumi Timur Tengah, yang senantiasa menjadi sumber konflik. Minyak baru itu, kemungkinan besar diproduksi dari lahan pertanian.
Walaupun, sejak awal tahun ini, peningkatan produksi minyak dari jagung, kedelai, tebu itu, telah mengerek harga pangan ke tingkat yang menggoncang ekonomi dunia; orang belajar dari kesalahan. Bahwa bio-energi, idealnya memang tidak memakai bahan yang juga menjadi sumber pangan manusia.

Kini riset riset terbaru di Amerika Serikat, diarahkan pada penggunaan algae, atau ganggang ber-sel sederhana, sebagai sumber produksi bio-energi. Produktifitas algae per hektar ratusan kali lebih tinggi dibanding kelapa sawit atau tebu, dalam menghasilkan bahan bakar. Riset itu dilakukan perusahaan swasta, dengan dukungan dana dari pemerintah dan juga lembaga keuangan. Sebuah perusahaan algae, Solazyme, baru baru ini mendapat pinjaman tanpa bunga hampir Rp 500 milyar, untuk riset bio-energi. Perusahaan ini akan mampu memproduksi jutaan gallon bensin dari ganggang, dalam tiga tahun ke depan.

Jepang memilih tanaman yang agak berbeda, yakni rumput laut, untuk sumber energi masa depan mereka. Sebuah proyek penelitan raksasa dilakukan di Laut Jepang, untuk membiakkan rumput laut yang cocok sebagai produsen bio-energi. Proyek itu mengambil area laut seluas 1 juta hektar. Nantinya, diperkirakan mampu memproduksi bensin sebanyak 20 milyar liter setahun. Atau memenuhi sepertiga kebutuhan energi domestik Jepang. Program ini dikerjakan Tokyo University, dengan dana pemerintah dan dukungan Lembaga Riset Mitsubishi.

Jadi, kaum peneliti dengan dukungan pemerintah dan swasta, bergandeng tangan mencari sumber energi baru. Tenaga terbaik, dan modal dikerahkan untuk menjawab tantangan zaman. Mereka tidak mimpi sesuatu yang mudah. Tetapi bekerja keras mengejar alternatif, dengan metode ilmiah yang dapat dipertanggung-jawabkan.

Alangkah beda dengan cara kita memimpikan Blue Energy. Mimpi mengubah minyak dari air laut. Berharap semuanya gampang, dan instan.

source :http://www.greenradio.fm/index.php?option=com_content&view=article&id=206:riset-untuk-energi-baru&catid=80:science&Itemid=176

Baik-Buruk Biofuel

Biofuel adalah salah satu energi alternatif pengganti bahan bakar fosil yang kian hari kian mendapat perhatian dari banyak kalangan. Namun mungkin masih banyak dari kita yang belum tahu apa itu biofuel dan apa sisi baik dan sisi negatif dari produksi biofuel yang perlu kita tahu. Apalagi kelapa sawit Indonesia banyak disorot sebagai sumber biofuel yang dianggap tidak baik. Kenapa begitu? Berikut petikan hasil investigasi Vikki Miller dari Guardian.

Apa itu biofuel?
Biofuels dapat dibuat dari bahan-bahan organik yang bisa dikembangkan secara cepat. Dua pemain besar di pasaran adalah biodiesel dan bioethanol – minyak cair yang terbuat dari organisme hidup, seperti tanaman dan hewan. Pertimbangannya daripada bahan bakar fosil, biofuel adalah sumber energi yang bisa diperbaharui dan berkelanjutan, juga salah satu dari sedikit teknologi yang menggantikan penggunaan bahan bakar minyak pada untuk transportasi.

Dari mana kita memperolehnya?
Sebagian besar biofuel yang digunakan saat ini berasal dari pertanian. Tiap-tiap negara mengkhususkan diri pada tipe biofuel tertentu, tergantung pada iklimnya. Di Eropa biofuel diolah dari rapeseed (Brassica napus), gandum, tebu, Sementara di Amerika umumnya berasal dari jagung dan kacang merah (soybeans). Tebu cenderung tumbuh di Brasil dan minyak kelapa sebagian besar berasal dari Asia Tenggara.

Namun, saat ini tiba pada biofuel generasi kedua – dengan sumber bahan pembuatan biofuel yang lebih luas, termasuk zat-zat organik, sisa makanan, kayu, limbah rumah tangga, bisa diolah menjadi biofuel. Disini seluruh hasil pertanian bisa digunakan sehingga kita bisa efisien dalam pengurangan gas karbon. Hanya saja para ahli meyakini masih perlu lima hingga sepuluh tahun untuk membuatnya berjalan secara komersial.

Juga ada harapan cukup tinggi pada algae dan jatropha, tumbuhan semak beracun yang tumbuh di Amerika, Afrika dan Asia.

Bahkan produk seperti coklat, permen, dan kripik kentang pun bisa diubah menjadi biofuel.

Apakah ini penemuan baru?
Tak sepenuhnya. Mesin diesel, yang diciptakan insinyur Jerman Rudolf Diesel 1892, pertama kali dijalankan menggunakan minyak kelapa. Di awal 1900an, Henry Ford mendesain salah satu kendaraan pertamanya berbahan bakar ethanol.

Kenapa penggunaan biofuels sempat dihentikan?
Minyak bumi murah, khususnya dari Timur Tengah, mengalihkan minat dan penelitian dari biofuel. Minyak bumi murah mendominasi pasar.

Kenapa sekarang biofuel kembali diminati?
Berkembangnya kepedulian pada perubahan iklim, peningkatan harga minyak bumi dan ketidakamanan suplai minyak bumi membuat pemerintah dan kalangan industri bergegas mencari alternatif pengganti. Amerika bertekad 2025 mengganti 75% minyak bumi importnya dengan biofuel. Uni Eropa meyakini biofuel sebagai faktor kunci penurunan karbon di masa datang, dan menargetkan 10% transportasi berbahan bakar biofuel di 2020.

Apa untungnya beralih ke biofuel?
Sumber biofuel dapat diperbaharui, suplai bisa disediakan sesuai yang dibutuhkan, sehingga secara teori jumlahnya tidak terbatas dan aman. Juga tidak pelarangan biofuel di banyak negara sehingga bisa suplai bisa terkendali. Kelebihan lainnya, biofuel bisa digunakan untuk menjalankan mobil dan mesin-mesin yang ada sekarang.

Apakah biofuel baik untuk lingkungan?
Secara teori, pembakaran biofuel akan melepaskan karbon sejumlah yang dia ambil ketika masih berupa tumbuhan saat bertumbuh. Kalau ditotal jumlah karbon yang dihasilkan saat dipanen, diolah dan didistribusikan, mungkin masih belum cukup memuaskan. Namun, ini tetap jauh lebih sedikit dibanding penggunaan bahan bakar fosil.

Adakah dampak negatifnya?
Biofuels juga memunculkan kritik menyangkut lingkungan hidup. Selain melepaskan emisi karbon yang rendah saat pembakaran, namun peningkatan perluasan lahan pertanian untuk produksi biofuel secara keseluruhan juga punya sumbangan pada peningkatan karbon di atmosfir.

Konsumsi biofuel yang meningkat secara global berarti juga ada sumbangan dalam pengrusakan hutan basah dan hutan tropis untuk menyediakan lahan tanaman sumber biofuels. Gas rumah kaca dalam jumlah yang sangat besar dilepaskan saat pembukaan lahan, ini membuat para ilmuwan meragukan ini sebagai solusi pengurangan gas karbon. Ini juga punya dampak utama pada konservasi tanaman dan binatang yang hidup di area itu, sebagaimana makin rentannya perlindungan air dan tanah.

Saat ini juga mulai dikenali dampak kekerasan social dan ekonomi yang bisa timbul. Kelangkaan bahan pangan meningkat di negara-negara miskin, karena perubahan lahan pertanian tradisional menjadi ladang pertanian untuk kebutuhan biofuel.

Belum lagi, peningkatan kebutuhan pada hasil pertanian, seperti beras, jagung atau soya, yang juga bisa digunakan selain sebagai bahan pangan juga biofuel, telah mendongkrak harga, membuat kaum miskin semakin sengsara. Di Mexico tahun lalu terjadi kerusuhan.


Apakah sebagian biofuels lebih baik dari yang lain?
Biofuel yang terbaik, seperti ethanol diproduksi dari tebu di Brazil, dapat menghasilkan energi 10 kali dari energi yang dibutuhkan untuk memproduksinya, dan melepaskan seperempat gas emisi karbon dibandingkan bahan bakar fosil.

Sebaliknya, biofuels yang tidak bagus menghasilkan energi yang lebih rendah, dan menyumbang emisi karbon secara tidak langsung melalui pembakaran hutan dan konversi hutan untuk lahan tanam mereka. Biodiesel yang diproduksi dari minyak kelapa sawit di Indonesia adalah contoh biofuel yang buruk.

Sumber: http://www.guardian.co.uk

source :http://www.greenradio.fm/index.php?option=com_content&view=article&id=399:baik-buruk-biofuel&catid=91:bio-energy&Itemid=171
google918401c9860b4077.html